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Lorenz-like systems and classical dynamical equations with memory forcing:
An alternate point of view for singling out the origin of chaos
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An alternate view for the emergence of chaos in Lorenz-like systems is presented in this paper. For such
purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to
the problem of a damped and forced one-dimensional motion of a particle in a two-well potential, with a
forcing term depending on the “memory” of the particle past motion. The dynamics of the original Lorenz
system in the proposed particle phase space can then be rewritten in terms of a one-dimensional first-exit-time
problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental
equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled
analytically deriving a piecewise linearized Lorenz-like system that preserves all the essential properties of the
original model.
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[. INTRODUCTION as it acts as an “endogenous” forcing able to permanently

sustain the motion even in the presence of friction.
The Lorenz dynamical system, originally introduced by The previous interpretation of Lorenz dynamics actually
Lorenz[1] in order to describe in a very simplified way the /€ads to a generalization of the Lorenz model to a wider class

Rayleigh-Beard problen{2,3], immediately became impor- of systems showing similar dynamical properties. We shall
tant in itself as one of the most studied Iow—dimensional'mmduce a particular system belonging to such a class that

chaotic svstems. Even todav the Lorenz model re resentsbecause of its simplicitypiecewise linearity;, will allow us
y ) y P t8 study the dynamics of the original model using analytical

pargdigmatic_ examplg for both theoret.ical and numerical inyg|s. Indeed, in the steady chaotic regirie., when the
vestigations in checking some results in chaos theéry7],  system permanently lies on its attractor)sae evolution of
in the study of geometrical properties of dynamical systemsg, point in the Lorenz phase space consists of amplified os-
[8-11], in nonlinear analysis of time seri¢42,13, in the  cillations around the two different fixed points. The most
stabilization and synchronization of coupled systdih$—  evident aspect of the chaotic regime is the unpredictability of
16], and so on. the instant at which the center of the aforementioned ampli-
Nevertheless, despite the great attention attracted ovdied oscillations changes. The choice of a piecewise linear-
past decades, some fundamental and rigorous results haized version of the original model will allow us to highlight
been obtained quite recently, as, for instance, the proof of théhis point, while keeping unchanged the peculiar topological
existence of the Lorenz attractdd7,18, usually using properties of the Lorenz dynamics. The exact equation ruling
somewhat sophisticated mathematical tools. the instant of change of the oscillation center will be derived
On the Contrary, our aim here iS to provide a descriptionand i_i_discon.tinuous_dependence Of this instant on the initial
of Lorenz system dynamical features, which requires quit¢onditions will be highlighted. It will also be possible to
simple analytical tools and, at the same time, allows a Ver)yv_nte th_e analytlpal ‘equations that (Ijeflne.the flrst—r_eturn two-
intuitive inspection in Lorenz-like chaos. Preliminary resultsdimensional Poincarenap for the piecewise linearized sys-

have been reported in a short communicafibg]. Here we tem, which in turn synthesizes the main chaotic features of
shall give more details and additional results ' the model dynamics. Moreover, we shall show that, under

Our interpretation will base itself upon the fact that in theSUitabIe and reasonable conditions! the eyolution of.the Sys-
“steady state,” i.e., far from the initial transient and when thetem completely reduces to a one-dimensional chaotic map.

memory of the initial conditions has been lost, the Lorenz Toblsutr11m<r';1r|ze, start:ng ]:/rvci)m ﬁﬁr |rrlitzergrsta:tlior;], V\ﬁhShi"
system is equivalent to a suitably constructed second-ordé)re apie 1o propose a piecewise linearized version of the Lo-

integral-differential equation. This equation can be regardecfenZ model, which on one hand has the same dynamical

for instance, as a customary second-order one-dimensioanOloerties as the original system and, on the other hand, will

classical mechanics equation with a peculiar forcing term.pmVide analytical tools to explicate the emergence of chaos

The corresponding dynamics can be interpreted as the on#! Lorenz-like systems.

dimensional mptlon of a particle in a conservgtlve quartic Il. THE LORENZ EQUATION

two-well potential, subjected to a viscous damping and to an

additional force resulting from the past history of the motion.  The original Lorenz systeifil] consists of the three first-
The latter force turns out to be essential for chaos to emergerder ordinary differential equations
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X=—UX+UY, U(x)
Y=—-Y+(r—2)X, (1) 150
125
Z=—-bZ+XY, 100
75
where the dots indicate time derivatives andb andr are %0
positive parameters originally related to the fluid properties
and to the boundary conditions in the RayleighaBed prob- 25
lem. (Lorenz[1] usedo =10, b=28/3, andr =28.) > 9 ; 5, X
The fixed points of systenil) and their corresponding
stabilities depend om. Forr=<1 there is only ondstable FIG. 1. The constant-in-time quartic potentidl (¢=10, b

fixed point in (0,0,0). For >1 the origin looses its stability =8/3,r=28). The classical particle representing the Lorenz system
and a pair of new fixed points appea(rt[b(r—l)]l/z, moves in the potentidl subjected to a viscous damping and to a
+[b(r— 1)]1/2,r —1), which are stable in the range<r memory forcing. The minima of the potential wells correspond to
<r. with r;=0(oc+b+3)/(c—b—1). (Note that the criti- the unstable points of the three-dimensional Lorenz system.
cal valuer, exists if and only ifeo>b+1.) Forr>r. all o
fixed points are unstable, and the Lorenz system can exhibffhere we use the square brackets notgtigg(t) to indicate
either periodic or chaotic behavi¢see, e.g., Ref20] fora  the exponential average of any suitable time funcfion its
comprehensive exposition on the makter past history,

Since we are interested in the casel, we can suitably "
define the scaled coordinates X/[b(r —1)]*2y=Y/[b(r [f]k(t)zkf ds e ksf(t—s). (6)
—1)]¥2,z=2/(r—1), so that the systerfl) becomes 0

From now on we shall refer tpf], as thek exponentially
vanishing memorpf the functionf or in short itsmemory
) Note that, for the memoryf], to exist, it suffices thaf(t)
y=—y+x+(r—=1)(1-2)x, (2) =Q[exp(—ht)], with h<k, ast— —oo (the time functions
we shall be dealing with are even bounded in this limit

To summarize, we insert in the second equation of(Ey.
y(t) obtained from the first equation arzdt) given by Eq.
with fixed points (0,0,0) and¥£1,+1,1). (5) and get for the variable=x(t) alone in chaotic steady

ptate the following second-order differential equation with

memory(in fact, an integral-differential equatigin

x=0o(y—X),

z=b(xy-2),

We now reduce the Lorenz system to a unique differentia
equation forx=x(t), whose solution makes a direct calcula-
tion of y(t) andz(t) possible. By inserting the expression for b
y in terms ofx obtained from the first into the third equation X+ (o+1)x+o(r— 1)( —(x>—1)x
of Eq. (2), one easily gets 20

b 2
'z+bz=% %(x2)+20x2 | @ +(1 5 [xe=1]px . @)
One can interpret this equation as the dynamical equation
whose general solution is given by of a (unit mas$ particle, viscously moving in a compound
potential energy field consisting of a weighted averége
bty b, b, the chaotic regimé/20<1) of a quartic potential energy
z()=e 0 2(to) = 5oX(Lo) | +5x(1) field independent of timéFig. 1)
b\ [t (x*—1)?
+ 1——)b ds e P(t=9x2(s). (4 UX)=o(r=1)—F— (8)
20 to
We have already stated that we are interested in the evolutio‘%nd of a quadratic potential energy field
of the Lorenz system in the chaotic steady state, i.e., far from (x2—1)
the initial transient. Thus, we ldéty move back to—« and Ux)=o(r—1)[x2—1], 5 (9)
obtain the steady-state expression fft), which can be
written in the form whose curvature is given by a suitable memory function of

" " the past motion.
_ 22 N P Without the memory term the particle would stop in one
2(t) Zox D+ ( 1 20>[X IV, ® of the minima of the bistable potentil due to the damping
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term —(o+ 1)5(. Indeed, thdJ, contribution yields, through

an exponential average on the past evolution, an “endog-
enous” forcing term that can permanently sustain the motion.
The particle oscillates with growing amplitude around the
minimum of one of the potential well until its energy is suf-
ficient to allow the crossing of the barrier ¥=0. As men-
tioned already, the chaotic behavior of the system emerges
just in the unpredictability of the instant at which the particle
moves from one well to the other. Trajectories relative to
very slightly different initial conditions can produce strongly
different sequences in the number of oscillations in each x
well. In the following section we shall explain this fact ana-

FIG. 2. Typical chaotic phase portrait for the original Lorenz

lytically.
impli i ; del (p=1.31,a=10.30,5=0.216).
In order to simplify and standardize the analysis, let ug 0% @ @ B )

rescale the time in Eq. (7) ast—7=[(r—1)b/2]"%, to

ti d of Eq(12) with t
obtain the equatiohereafter called.orenz equation equation and of Eq(12) with parameters .4, 7), and

(A,Q) suitably chosen in order to get similar ranges of mo-
tion. Note that the endogenous Lorenz forcing term, mimed

2
d_x+ ,]d_)(+(xz_1)xz — a[x2—1] 4% (10) by — A cost)x, is in fact neither monochromatic nor with
d# 'd o vanishing average value.
where Ill. THE GENERALIZED LORENZ SYSTEM
o+1 20 2b The Lorenz equatiorf10) can be usefully recast in the
=, a=-——1, =\ form
T Jr—1bi2 b PENT1
. . . : d’x  dx
Note that, giverb andr, o (the viscosity parameter in the —+ nd—+{q(x)+a[q(x)]5}<1>’(x)=0, (13)
original problem affects both the friction term and the forc- dr T

ing term in the Lorenz equation. This fact shows how much

these “opposite” contributions are in fact strictly related if Where the prime indicates the derivative with respectaad

the equation is to be viewed as a representative of the origin our case(x) =x%2 andq(x)=x*—1. Such an equation
nal Lorenz system. Even if one now considers the Loren£an be interpreted as the description of the motion of a unit
equation as the main subject of the study, one must note th&tass particle subjected to a viscous foreeydx/d7 and

not all the (positive) values ofa, 3, 7 are consistent with interacting with a potential field> through a “dynamically
their definitions in terms of the original parametbrsr, r. In ~ varying charge”q(x) =q(x)+a[q(x)]g. This charge de-
particular, in order to observe chaotic behavior, the followingpends both on the instantaneous particle posikier) [by
inequality must hold: means of the term(x) ] and on the past evolutioiiby means

of the memory charggq(x)]s). The coupling of q]z with
>77[2+ﬁ(/3+ 7)] the fixed potential fieldP acts as an endogenous forcing
X (.
2B

term that can sustain the motion even in the presence of

(Further details on the relation between the two sets of pa- 4
rameters are given in Appendix)A. 3
Equation (10) allows us to highlight the role of the 2
1
0

(11)

memory forcing term in the Lorenz system dynamics. For
this purpose it is interesting to compare the Lorenz equation
with other examples of chaotic nonlinearonautonomouys

systems as, for instance, the inverse Duffing equaion
+ X+ (x2—1)x=A cost), which describes a sinusoidally

forced quartic oscillatoj21], or more appropriately the para- -3
metrically forced equation 2 -1 0 1 2
X
X+ X+ (X°—1)x=— A cog Qt)x. (12) FIG. 3. Typical chaotic phase portrait for the inverse parametri-

) o ) cally forced Duffing equation #=1.31, A=4.2, 1=0.99). The
Note that in the latter cases the motion is sustained by extegnaotic evolution of this system is characterized by the competition
nally assigned forcing terms, while in the case of the Lorenzetween a viscous friction and a forcing term with the same struc-
equation the motion is self-sustained by the endogenous terfire of the right hand side of the Lorenz equation. Here, however,
—a[XZ—l]ﬁX. In Figs. 2 and 3 we give a numerically ob- the forcing is externally given and the memory is replaced by a
tained comparison between the phase portraits of the Lorerown function of time.
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friction, and the chaotic behavior can actually arise from the U(x)
synergy between this term and the viscosity. Put in the form
(13), the Lorenz equation is arranged to be generalized to a
generic chargg(x) interacting with a generic potential field
®(x). Correspondingly, it is possible to obtairganeralized
Lorenz systenwhose “x projection” (far from the initial
transieny yields Eq.(13). Indeed, by inverting the calcula-
tion followed to derive Eq(13) from system(2), one easily
gets the generalized Lorenz dynamical system

x=0o(y—X), x
- , FIG. 4. Quartic potentialU for the original Lorenz system
y=—y+x+(r=1)(1-2)'(x), (14 (dashed lingand for the piecewise linearized systéfull line). The

linearization of the Lorenz system maintains the qualitative shape

. 1 o .
7= —bz+Db Eq’(X)(y—X)+q(X)+ 1. of the constant-in-time potential.

Therefore, the specific Lorenz model can be viewed as k:a(y—x),

singled out from a quite general class of dynamical systems

that can exhibit chaotic behavior, their common essential

property being an exponentially vanishing memory effect to- VR _ _

gether with a viscous damping. y yFx+(r-1)(1-2)sgrx), an
Equationg13) and(14) are related to Eq.7) by assuming

as potential energy field the quantit/=(b/20)U+ (1

. . X+
—b/20)U, with z=—bz+ bsgr‘(x)Ty.

U=a(r—1)fq(x)<b’(x)dx and Ui=o(r—1)[q]gP.

(15) Our assumptions onb and q correspond in Eq(7) to
UX)=o(r—1)(Ix|—1)%2 and Uyx)=o(r—1)[|x|
Obviously, any choice off and® should maintain the main _ 1]p(|x| —1). Thus, we are faced with a simplified model,
properties of the Lorenz model, i.e., correspond to a two-welbptained by replacing the constant-in-time quartic potential
piecewise differentiable potential enerdy(x), such that ith a piecewise quadratic one resulting from the superposi-
U(x) —o as|x|—c. tion of two parabolas with vertex it 1 and truncated at
We shall now focus our attention on a particular choice= g (Fig. 4). The two-well character dfl is obviously main-
for g and @, which will maintain all the qualitative proper- tained as well as the piecewise differentiability. The replace-
ties of the Lorenz system and, at the same time, will allow usnent of the original potential actually corresponds to a lin-

to deal with chaos analytically. earization of the system around both unstable fixed points
(+1,£1,1), with the matching performed = 0. It appears
IV. THE PIECEWISE LINEARIZED LORENZ SYSTEM that the chaotic behavior of the original model does not de-

pend on the differentiability irk=0. One can guess that
other classes of dynamical systems also can be transformed
As already noted, the chaotic behavior of the Lorenz sysin a piecewise linearized version by means of the same op-
tem essentially depends on the unpredictability of the inerations.
stants wherx change its sign: as long as it keeps constant |t is easy to check that the fixed points of E47) are
sign the system evolution is certainly nonlinear, and never¢+1 +1 1) and that the equation ruling their local stability
theless not “chaotic” at all. This fact suggests a slight modi-js the same as for the original Lorenz system with parameters
fication of the original form of the Lorenz system, inorderto b, o, p=(r+1)/2. In particular, ifc>b+1, the critical
single out analytically the origin of chaos without facing any value ofr for our piecewise linear systefi7) is given by
difficulties arising from nonlinear features. We thus set i”r(c”“)=2rc—1. In Figs. 5 and 6 two chaotic phase portraits
Egs. (13) and (14) ®(x)=|x| and q(x)=|x|—1 obtaining  for systems(2) and (17) are shown, corresponding to the
(for x#0) the piecewise linear Lorenz-like equation same choice of ande, and different choices afin order to
dx preserve the relationships betweerand the proper corre-
un _ _ _ sponding critical value.
77dr+{|x| 1+ aflx|=1]gtsgnx)=0, (16 While dealing with systenil7), the main simplification is
that it is separately linear for<O andx>0 and can thus be
where sgnf)=|x|/x. The corresponding piecewise linear- analytically solved in each region. Indeed, by applying the
ized dynamical system, with the original choice of param-operator (I/d7+ 8) to each side of Eq.16) one obtains the
eters, is then given by equation

A. Linearization near fixed points

d?x .
d+?
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of the customary analysis on each sidexef0. To obtain a
global solution, such partial solutions should be matched at
x=0 under the reasonable assumptions that the position

the velocityx, and the memory|x|]; are continuoug28].
Notice that, in contrast, when crossing the planethe ac-

celerationx turns out to be undefined. Howeverxifr) =0,

referring to the left and right time limits(7~) andx(7"), it
appears from Eq(16) that they are related by the equation

3y ~ 0 "1'4 Lo 5 X(77)+x(7)=—25x(7). In the sequel we shall refer to

X x(77) andx(7*) as the acceleration “immediately” before
FIG. 5. Typical chaotic phase portrait for the original Lorenz and ."Immedlately." E_‘ﬂer t,he crossing, respectively. )
system (=10, b=8/3, r =28). Since Eq.(16) is invariant under the transformation—
—X, 7— 7, we can focus our attention only on one of the two
3 2 regions, e.g.x>0, and describe the motion in this half-space
d>x d“x dx A : -
(Bt ) —+(1+B7y) — (the evolution in its twin half-space being recovered through
d73 d7? dr the change<— —x). Clearly, this is equivalent to putting a
“rigid wall” in  x=0 and looking at the crossing af as an
+B(1+a)[x—sgn(x)]=0, (18 elastic collision.
_ . ) In summary, according to the previous scheme, the system
which can be explicitly solved separately on each side ofyg|ytion in time is completely described by the following
x=0. The nonlinearity of the model is simply reduced to asteps:(1) motion for x>0; (2) collision againstr and dis-

change of sign of the forcing termt 8(1+ «) when x Lo . : . .
a . continuity ofx; and(3) inversionx— — x and matching with
crosses the plane=0, henceforth denoted withr [22]. As new solution defined in the region>0 again.

we shall see, the crossing times are somewhat unpredictabl%,
as they result from the discontinuous solutions of(@ci-
dentally transcendenfakquation. Our piecewise linearized
system will thus turn out to be an important tool to analyti- | we defineé=x—1, Eq.(18) assumes a simple form
cally investigate the emergence of chaos in Lorenz-like sys- ) )

tems. The main advantage of the piecewise linearization is EH(B+mEF(L+Bn)é+B(l+a)é=0, (19
that one has to deal only with the simplest nonlinearity, i.e.,

an isolated(not eliminable discontinuity (see, e.g., Refs. Which is a linear third-order differential equatighomoge-

[23—27) for other examples of piecewise linear chaotic dy-neous and with constant coefficientds a consequences of
namical systems the Routh-Hurwitz theorerfi29], a critical valueca,, for the

parameter exists, i.e.,

1. Motion in the half-space =0

B. Analysis of the motion
neyes o | (1+B7)(B+7)
Let us now consider in detail the second-order integral- aﬁT—l- (20)

differential Eq.(16), which describes the evolution in time of
x for the piecewise linearized system in the chaotic steady-, a> a, the fixed points are unstable saddle focus with a

state. It is equivalent to a third-order nonlinear differential o4 negative eigenvalue A, and a pair of complex conju-
equation whose phase space is described by the coordinates

Coe _ o gates eigenvalues; =\, +i\;, Ay =\, —i\;.
X, X, X (with a small abuse of notation from this time on we For the sake of simplicity we shall indicate with ()

shall indicate with the dot the differentiation with respect 0 e time interval between two consecutive collisions in the
7). Solutions of Eq(16) can be easily calculated with tools steady state of the system. Without loss of generality we

3 assumex(0)=0 andk(0)>0. Then, it can be easily shown
that in the time interval (0;) the motion in the phase space

& & £ (£>-1) is completely described by the equation

E7)=M(1)M(0) &, (21)

where we have defined

-2 &(7) &o -1
2 =) 0 i 3 dn=| &0 |, &=| &|=| &0 |,
i ) &1\ Eo)

FIG. 6. Typical chaotic phase portrait for the piecewise linear-
ized Lorenz systemd=10, b=8/3,r=55). and
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s more rapid than the exponential oscillating growth on the
W unstable manifoldV", the parameter controlling this differ-
ence being3+ 7.
Although the fixed points are saddle focus, it appears that
the piecewise linearized system does not exhibit Shilnikov
chaos[30] owing to the absence of an homoclinic orbit.

2. ar collision and inversion

To complete the description of the piecewise linearized
system dynamics, we consider the instaptat which the
first collision occurs. At this time, as already remarked, the
trajectory coming from the half-spage>0 must be matched

u with the solution defined again in the same region, but with
W corresponding new “initial conditions[31]

FIG. 7. Stable and unstable manifolds for the p@#st0 in the &=-1,
phases spacé, & & The evolution of the piecewise linearized
system on each side af consists of an exponential decay along glz — 'g( 1), (239

W?* and of an amplified oscillations or/".

E1=—&E(1])=E&(1) +27&(Ty),

Rqeklf) Im(e)\lr) e*)\oT
M(7)= Re(N€MT)  Im(heM7) —Nge o7 | or, in matrix form
2 N7 2 N7 —NoT
Re(A7e™™) Im(Afe™1”)  Age Mo £=0D& ) (23b)

(Note that, fora>a., M(0) is always invertible since ith
detM(O)z)\i[)\inr (A, +X\g)?] and\;>0.) The eigenvalues
of the matrix M(7)M(0)~%, which connects the vector 1 0 0 1 0
&(7) to its initial value &, aree17,e*7,e o7, with corre- p=lo 1 0 and 7=l 0 -1 o0
sponding(constant-in-timg eigenvectors
0 —-29 -1 0o 0 -1

1 _1 1 The matrixD accounts for the acceleration discontinuity in
vi=| M|, vo=[ M|, ve=| Mo x=0, while J yields the sign inversion after the impact.
A2 — A2 From Eqgs.(21) and(23b) it follows that the velocity and the
! A 0 acceleration immediately after the collision are related to the
initial conditions by the operatoP(7)=3DM(7)M(0) 2,

With respect to the baser;,v,,v3} one has according to the formula

g m)=eM(c MV Fepe MTV,) Fege M. (22) £ =Pl 11(&) k. (24)

For the saddle point§=0 there exist a stable one- Notice the highlighted dependence ef on &, which re-
dimensional manifoldV*® corresponding tws, veals the nonlinear character of this important relationship.
. Starting from the above results, the very origin of chaos in
We={pvs|p>—1} the piecewise linearized Lorenz system will be identified and

_ _ _ discussed in the following section. We shall also show that
and an unstable two-dimensional manifol” generated by  the basic mechanisms for chaos to emerge apply also to the

v1,V, (see Fig. 7, original Lorenz system.
W= le‘;Vz V12_i V2 lp>-1, qeR{. C. Dependence ofr; on initial conditions
1. Unpredictability of the crossing time
The evolution of the linearized system in the interval, As already observed, the instant at which the planis

is the combination of an exponential decay alofy§ and of  crossed, strongly depends on the initial conditions. This fact
an amplified rotation onW". To determine the relative is strictly related to the chaotic behavior of Lorenz-like sys-
quickness of each component of the motion with respect téems. Let us now study in some detail this topic for the
the other, consider that from E(L9) it is easily checked that piecewise linearized model.

No— 2\, =B+ 75, and so\g>\, ,V «, B, . Therefore, the ex- The instantr; at which the first collision occurs is defined
ponential decay along the stable manifoltl® is always by the conditioné(7,)=—1. From the first line of Eq(22),
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(@) (b)
2.0 T T 2.0 T T — C(TI)
X} ! 10 / B(Tl) 10
=) > 5
= ,
= - 1 4 4 10 \12 4 T
T, o
20 L L 20 L .
0.0 5.0 10.0 150 0.0 5.0 100 15.0 ~10
T T

FIG. 8. Graphical interpretation of the discontinuous character -15

of 7, for small changes of the initial condition. The full line is the
curveg(r,), the dashed line i&(7,) for the parameterar=6.50,
B=0.19, and»=0.78. Bullets denotes the first intersection be-
tweeng andh, whose abscissa defines the residence time.

FIG. 10. Ordinate fOEOZO of the straight lines of the familg
(=6.50,8=0.19, and5»=0.78).[See Eq.(26) and Appendix B
for the exact definitior.

71 IS thus the smallest positive solution of the transcendentarlelated t0 the |n_|'t|al cong|t|ons, !chzs) cgn be rewn.tten n
equation terms of &, and &,. In this form it describes a famils of

straight lines in the plang,,£,} parametrized byr,

—1=C,eM™cog \j71) + CoeMIsSin(\ ;) + Cae~ Mo, . )
(29 S A(71) €0+ B(71)§p+C(71)=0 (26)

whereC,, C,, C; are linearly related to initial conditions. [see Appendix B for the explicit expression of the coeffi-
The residence timer; is therefore the first intersection of cientsA(r;), B(r;), C(7)].
the graphs of g(r)=—-Cze *1—1 and h(r) Let us denote withT;),i=0 the ordered sequence of the
= C,eMTicosfm)+CeMTsin(\ 7). Sinceg is a decreasing  zeros ofB(r;). Note that one always ha&=0. The slope
exponential function antl an oscillating function with grow-  of the straight lines ofS,— A/B, and their ordinate fog,
ing amplitude, one can easily understand why even a little-y je —C/B, have their singularities i, ,i=0. Both
modification of initial conditions can produce a discontinu-thege functions are only asymptotically periodic because of
ous variation ofr; (Fig. 8. , . the presence of terms proportionaleéo*o™, which become
In conclusion, the unpredictability of the residence time isegiigible only for larger; (Figs. 9 and 10
closely connected to the discontinuous character of the solu- |, each interval T,,T,,,),i=0, the function—A/B is
tions of Eq.(25). The chaotic behavior for the piecewise growing everywherdsee Appendix Band varies from- o
linearized system clearly stems from such unpredictabilityand +o0. Therefore, as, increases, the straight lines &f

Our claim is that an entirely analogous situation exists alsQqate counterclockwise and at the same time translate start-
for the original Lorenz model. We shall return, however, |nin from the£, axis (obtained forr; = 0) (Fig. 11
more detail on this important analogy in the sequel. gThe envelgc?pe of the familg ist;_cur)ve 9. L.

2. The residence time-; as a function of'§O and &,

S . %ozéo( 1),
We now explicitly investigate the dependencerpbn the 7 N
initial velocity and acceleration. As previously remarked, the §o=&o(T1),

function 7, = rl(éo,éo) is implicitly defined as the smallest

positive solution of Eq(25). SinceC,, C,, C, are linearly which looks similar to an elliptic spiralFig. 12. (A para-

metrical representation of is given in Appendix B).
From Eq.(26) the contour lines of the functiom, are

- @ parts of straight lines in the planéq, ,). Indeed, according
B(r) to the definition, each line af is in fact a contour line forr;
20 only where its points do not belong to another line corre-
10 J sponding to a smaller value af; and, furthermore, only
j ) where their abscissas correspond to positive valueg,of
o ("/ 6(/8 (’0/ 1(2/14 Tt Rather than a family of straight lines, the function contour
lines are rays or segments according to the constant value of
-20 1.
-30 For 7, ranging from 0O toT, these lines perform a com-
plete counterclockwise “rotation,” starting from thig axis.

FIG. 9. Slope of the straight lines of the famif/(«=6.50,8  Thus, they cover the entire half-plagg=0 except the re-
=0.19, andy=0.78).[See Eq(26) and Appendix B for the exact gion inside their envelope; from this first rotation one obtains

definition] a set of rayqFig. 13.
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2
e 1
£, o \\
-1 D
o NN 3 4 .
5 S &,
4 3
0 1 2 3 4 -4

EJO FIG. 13. Contour lines of the residence timgas a function of
the initial conditions &,, &) for 7,€[0.T,] («=6.50, 8=0.19,
FIG. 11. Family of curvesS [defined in Eq.(26)] for «=6.50, and 7=0.78).
£=0.19, andn»=0.78.
D. The piecewise linearized model as a one-dimensional map
Subsequently, for; ranging fromT, to T, the contour
lines become segments of variable orientation and contained
in the region delimited by the curve already generated from At this point of our study we have analyzed in some detail
the first rotation and the new envelope of the second set dhe unpredictability of the time at which the system crosses
straight lines. This behavior repeats itselv r, the planerr. To completely motivate the chaotic dynamics of
e[T,,T,41],i=0. Because of the aperiodic character ofthe piecewise linearized system and thus of the original
the functions involved, the curve outlines in the positive model, we must, however, add some further results on the
half plane a structure consisting of “pseudoelliptic” annula. attracting set of the system.
Moving counterclockwise along each of these annulg, All results obtained in the preceding section can be easily
grows continuously. On the contrary, passing through th&xtended to theth collision againstr. Specifically, denot-
border that separates two different bands, one meets discottg with &, the array assigning position, velocity, and accel-
tinuities in the dependence of on initial conditions. eration immediately after theth collision
The curvey “winds” round the point Po=(\g,—\3)

1. The -plane Poincaremap

L -1
(see Fig. 12 For (§0,§0)—>(>\0,—)\§) one hasr;— o, since )
for these initial conditions one obtairs;,=C,=0 and the &= & |,
system exactly lies on the stable manifoid®. Its motion is é
in this case an exponential decay towards the fixed pé€int n
=0. _ _ _ we have[similar to Eq.(24)]
The previous observations allow to easily guess the struc-
ture of the graph ofr;=(&y.&,) shown in Fig. 14. It &=P(r0)én-1, (27)

should be noted that, shows instability with respect to the where we have denoted with, the nth residence time, i.e.,

|_n|t|al conditions only in a. I|.m|ted subset of the half Plane the time interval between the( 1)th collision and theith
§0=0. As we shall see, it is natural to expect that in they,q

chaotic regime the system is quickly attracted inside this

region. The first line of Eq.(27) gives 7, in terms of&,_; and

£._1: the dependence of this time on the<{1)th initial

a 0 05 éo 0.5

0 K —3.
| | £, s

1 50

FIG. 14. Graph ofr; as a function of the initial conditions,
FIG. 12. Envelopey of the family of straight linesS looks obtained by numerical solution of the transcendental ) («
similar to a spiral ¢=6.50, 3=0.19, andry=0.78). =6.50,8=0.19, andyp=0.78).
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conditions has already been discussed in Sec. IV C 2. Know- 25

ing 7,,, the other two lines allow to relate the velocy and 20 —_—

the acceleratio, to &,_, and&,_,. Equation(27) defines a s -
two-dimensional first-return Poincareap between 4, ,¢,) o —

and ,_1,&,_,) obtained from the sectiog=—1 of the 10 - —_—
phase space,'g,é. We recall that, in spite of its appearance, 5|——

the map(27) is in fact nonlinear, since the matriX depends —
on 7,, which is a transcendental discontinuous function of 0 05 1 .5 2 25
the (n—1)th initial conditions. Moreover, under suitable

conditions, the two-dimensional map for' the linearized sys- &

tem practically reduces to a one-dimensional map. n-1

FIG. 15. Map of the first-exit time, as a function of the cross-

o ing velocity gn, obtained by numerical solutions of Eq27) and
It has been already shown that fér—1 the motion in  (30) («=6.50, 3=0.19, andy=0.78.)

the phase space has the fo(a2)

2. Approximation of the system with a one-dimensional map

— Since in the chaotic steady state the velocity and the ac-
&7)=C1eMV; +CreM TV, cge T Moy, celeration, which define the initial conditions for the trajec-
tory after each impact, are not independent, the timean
be expressed as a functionf_; alone:r,= 7,(£,_1) (see
Fig. 195. The behavior of this map is easily understood if we

where\y and\,=Re(\;) satisfy the equationy—2\,=p8
+ 7, which in turn impliesAy>\,. As a consequence the

evolution in the phase spack £, ¢ consists both of a refer to the graph of; as a function of;g’o and &, (see Fig.

“rapid” decay towardsé=0 along the stable manifoldtV® X ; NP .
and of a “slow” amplified oscillation onV". We thus expect 14)', Indeed, in the chaotic regime” is superimposed to the

the phase trajectories to be strongly attracted on the unstabiggion of the plane &, ,£,-1) contained byy, wherer,
manifold and, once om", to slowly spiral outwards. Pro- shows unstable behavior with respect to a change in the ini-
vided trajectories start close enough)”, then they meet tial conditions(Fig. 16. For those values of,;, for which
the 7-plane very close to its intersection with'" itself, i.e., £ passes through the same “pseudo-elliptic” coromg,

along the straight line slowly changes with varying crossing velocity. On the con-
trary, whenZ * intersects the boundary between two differ-
[ E+on e+ (NP =0 ent coronasy,, shows a discontinuity in its dependence on

' E=—1. 28 -1 (Fig. 195.

The linear dependence between velocity and acceleration

Let us assume that the attraction towards the unstable marimmediately after each collision implies that the Poincare
fold is very strong and thus it takes place almost instantamap (27) becomes one dimensional, e.g., a map betwgen
neously (the goodness of this assumption is controlled byand &,_,. Figure 17 shows this fact fox=6.50, 8= 0.19,

B+ n). Under this hypothesis all trajectories approximatelyand »=0.78. By a simple inspection of the derivatives cor-
hit 7 along the straight lineC ™. Thus, from Eq.(23b), it  responding to the fixed points of the map one can easily
follows that, immediately after each collision, the systemcheck that they are all unstable, so that the map produces a

necessarily lies very close to the straight line chaotic behavior. Note that the discontinuities simply corre-
E+2(n+N)E—(N*+2\?)=0, .
oo [ EF20 NGO o E
E=—-1. n-1 |
Therefore, the following relation between velocity and accel- >\
eration is expected to hold approximately: 0 0.5 5 2 25 .
- : 2 2 -1 E-"n—l
§n+2(77+)\r)§n_()\r+)\i)zo- (30)
From Egs.(16) and (30) an analogous linear dependence -2 +
between the velocity and the memory follows 5 L
| . Y
(p+2N)én—aw,+1—(NF+\)=0, (31

FIG. 16. During chaotic evolution the couple of crossing condi-
wherew,, denotes theg-memory of¢ evaluated at th@th  tions (¢,,%,) is attracted on the straight liné *, which is super-
collision. As a consequence, in the limit we have consideredmposed on the instability region of the residence tirpéidentified
the attracting set for the ma@7) is £* and, therefore, it by the curvey). The graph refers to the values=6.50, 3
reduces to a one-dimensional map. =0.19, and»=0.78.
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1
0.8 \/ W
I 0.6
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0.4
0.2 ‘
0 0.5 1 1.5 2 2.5
gn—l u
N _ T W,
FIG. 17. Velocity¢, at thenth crossing of the plang=0 as a
function of the velocity¢,-; (¢=6.508=0.19,7=0.78). How- FIG. 18. Attraction of the piecewise linearized system on the
ever, notice that, in the steady-state chaotic evolution, the map iganifolds V" . The evolution of the system on each side mof
restricted to the range (0,1.2) of possible valuegpf;. consists of a “rapid” exponential decay along the stable manifold

and of a “slow " amplified oscillation on the unstable manifold.
spond to the analogous ones in the functige: 7,(£,_1),
evaluated along the straight line given by E80) and drawn  nonsolvable dynamical systems, such as the Lorenz original
in Fig. 16. ong. Thus, the use of numerical tools has been required only
For the sake of completeness, we turn now to the descrigiecause of the transcendental character of the concerned
tion of the piecewise linearized system in the original phasgquation.
spacex, X, x. There the system has two fixed points Ve explicitly remark that, in general, the attraction to-
(+1,0,0). For each one there exists a stable manifold wardsW" is not infinite, but nevertheless more rapid than
the amplified rotation on the unstable manifgl@member

WS ={pvs+(£1,0,0 |p==F1} (32 thathg—2A,=B+7%>0 Va,B,7). Therefore, we can ex-
pect that, if3+ # is finite, the attractor set is not exactly the
and an unstable manifold straight line£ ™, but a narrow “strip” that containg ™. This

strip intersects the region of the graph gf where the resi-
WY = [ pv1+v2 Vi7b2 (+1,0,0) dence time is strongly dependent on initial conditions and the
- 2 2i Y mechanism for chaos to arise is absolutely the same. Our

numerical simulations for finit@+ » are in excellent agree-
p=7F1 andqe R]. (33y  ment with these predictions and then we do not show their
corresponding graphs here, since they are practically indis-

tinguishable from the graphs we have already discussed.
During the evolution, the trajectories are rapidly attracted on 9 grap y

the unstable manifold relative to the half plane where they
belong(Fig. 18. Thus, immediately after the crossing of the V. COMPARISON WITH THE ORIGINAL LORENZ
7 plane, the phase point lies on one of the straight lines SYSTEM

We conclude our analysis by showing some simulated nu-
merical results. Before doing that, some remarks are worth

x=0 discussing. We previously considerggk,x as independent
' coordinates in the phase space because of their physical
while the memory and the velocity are linearly related ac-meaning: it is more intuitive to speak about acceleration
cording to equation rather than of memory of the system. Unfortunately, if we
want to “assign initial conditions” to the original Lorenz
(p+ 2)\r)>'<n_ @ sgr(kn)wn+ 1_()\r2+ )\iZ):o_ (34) system after the crossing of the plasriewe cannot consider
the acceleration and the velocity since from Eif) they are

As for the crossing of ther plane, the system can, therefore, ot independent variables =0. Indeed the relationx,
be described by a one-dimensional map. To get the map;nx _

X+2(n+A)x+(AN2+N2)sgn(x)=0

=0 always holds, while the memory is not known
7n=Tn(Xn—1) @NdXy=Xy(Xy-1) from the analogous ones in priori. As a consequence, we have to consider as indepen-
the rigid wall scheme, one has simply to consider that dent initial conditions the position, velocity, and memory.
coincides with|x,|. However, it is worth remarking that the comparison between

The reader should note that all the maps we have drawn ihe Lorenz system and the piecewise linearized one is com-
the preceding figures have been obtained by numericallpletely meaningful. This is because for the latter madel ;
solving the analytical Eq(27), which exactly defines,, is easily known in terms of,,_; and&,_; from Eq.(16): for
§n+1, and &,, 1, and they have not been computed by nu-the linearized system the choice &f_; or of w,,_; is abso-
merical integration of the differential systefas usual for lutely equivalent.
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20 : Wy
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15 . k/ 0.25
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0
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|2, 4 . 3
n-1 |x0 |
FIG. 19. Map7,= 7,(|x,_4|) for the original Lorenz system, _ ) N
obtained by numerical integration of the syst¢8%) (a=10.30, FIG. 21. Graph ofr; as a function of the crossing conditions for
8=0.216, andy=1.31). the original Lorenz system, obtained by numerical integration of the

system(35) for different initial conditions ¢=10.30, 3=0.216,

Since we are interested in the behavior of the Lorenz sysnd 7=1.31).
tem in the chaotic steady state, all the following results are

thus obtained via the numerical integration of the steady- . . ) .
state differential system From direct computation it appears that the residence time

around a fixed point depends on the initial conditions in a
X=v, way similar to that of the linearized systeffiig. 21). There
is a region in whichr; varies continuously with varying
0+ 70+ (= 1)x=— awx, (35) initial conditions and a regiofiFigs. 21 and 2R of strong
instability. In the latter regiom; changes continuously along
- 2 each “annulus” of the “spiral,” whereas it shows abrupt dis-
w==pwt B = 1), continuities crossing the boundary of each annulus. As ex-

where nomv=[x?—1],. This dynamical system, as already Pected, the system is attracted to that regféig. 23 and the
proved, is equivalent to the syste(®) far from the initial ~Maps in Figs. 19 and 20 derive from the overplotting be-
transient. tween Figs. 23 and 22.

We can now turn to the comparison with the piecewise The chaos actually emerges due to the combination of the
linearized system. For the original Lorenz model we havesteplike first-exit-time(Fig. 19 and of the piecewise return
computed the maps that relatg andli(nl to |)-(n71|, respec- map (Fig. 20 for_lnltla] conditions. This r_’nechanlsm is the
tively, by numerical integration of the syste(85) (the nota- same as for'th'e linearized model, for Wh'Ch We gave an ana-
tions are the same as in the previous segtibigures 19 and Iyucal'descnptlon. The results we pbte}lned for 'gh'e piecewise
20 show the results we obtained: the qualitative behavior Ollmearlzed system, therefore, provide in our opinion a useful
these maps is very similar to that of the analogous maps for
the piecewise linearized system. As we shall see, the mecha
nism for chaos to arise is indeed the same. Note that the
maps in Figs. 19 and 20 are not perfectly univocal: obviously 0.75
this is due to the fact that, in general, the Lorenz system does
not reduce exactly to an one-dimensional map when the
planex=0 is crossed.

0.50
4 R wO
= 0.25
al
4 1 2 3
| %o
FIG. 20. Map betweex,| and|x,_;| for the original Lorenz FIG. 22. Graph ofr; as a function of the crossing conditions
system, obtained by numerical integration of the syst&f) (« viewed from the above in the case of the original Lorenz system
=10.30,8=0.216, andp=1.31). («=10.30,8=0.216, andp=1.31).
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FIG. 23. Map between the crossing memary and the corre- M,
sponding crossing velocittpkn| for the original Lorenz systema(
=10.30,8=0.216, andp=1.31). FIG. 25. Tentlike map for the piecewise linearized systdm (

; ; - =8/3, 0=10, andr =100).
enlightening tool to understand both the original Lorenz sys-

tem and its eventual generalizations. ) . .
Finally, in order to point out the connection between thechanics form the dynamics of Lorenz-like systems and

original Lorenz system and its piecewise linearized versionShowed that its three-dimensional phase-space dynamics can
it is illuminating to compare the tentlike map shown by Lo- P& mapped into a one-dimensional motion of a particle os-
renz in his 0rigina| Wor|{l] with the ana|ogou3 map for our Clllatlng in a conservative quartic two-well pOtential, sub-
simplified system. Describing the relation between two conjected to a viscous dissipation and to a memory forcing.
secutive maxima of the coordinatgt), Lorenz found a Starting from this interpretation, we have introduced a piece-
univocal tent-like map(Fig. 24). For our linearized system wise linearized version of the Lorenz systébelonging to a
we obtain similar resultésee Fig. 25 The growing branch larger family of Lorenz-like systemswhich substantially
of the map is approximately linear, since for small values othas the same properties of the original model with the ad-
z the system evolution is confined in a half-space and, therejantage that it allows an analytical treatment.
it essentially consists of an exponentially amplified oscilla- The most evident aspect of chaotic regime is the unpre-
tion. For large values of, the map has the same shape of thedictability of the instant at which the center of the particle
Lorenz tentlike map. The linear growing of the left branch of amplified oscillation changes. Chaos arises due to the com-
the map is due to the simplification we made on the evolupination of the steplike behavior of this time with the piece-
tion on each side ok=0. The shape of the right branch \yise return map defining the crossing conditions. This aspect
shows that the piecewise linear system keeps all the comyag peen singled out analytically, focusing on the piecewise
plexity of the Lorenz model, which can be attributed to the|inearized version. There, the exact equation for the time, at
unpredictability of thex=0 crossing. The latter property is \yhich the oscillation center changes, has been derived and
the very origin of chaos in Lorenz-like systems. the discontinuous dependence of this time on the crossing
conditions has been shown analytically.

By means of numerical simulations we have verified that

The main conclusions from the present paper can be sunthe highlighted mechanisms for the chaos to emerge survive
marized as follows. We have reformulated in a classical mealso for the fully nonlinear Lorenz system, where analytical
techniques are not applicable.

VI. CONCLUSIONS

1.8
1.7 :
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obreR™, (Ala)  Specifically, Eqs(Ala), (Alb), and(Alc) then imply
r>1, (Alb) a>Ts1, (Ad)
B
o>b+1, (Alc) Finally, Eq.(Ald) can be rewritten in terms of new param-
eters as
r>r.. (A1d)
¢ _ 2+ BB+ )] A5
The parameters, 8, are defined as follows: “« 2B ' (AS)

from which necessarily EqA4) follows.

20 B 2b o+l
a=p L BENp 7T (r—1)bl2’ APPENDIX B: FAMILY S
The family of straight linesS is defined by the equation

From Egs.(Ala) and (Alb) it immediately follows that
a,3,n are positive too. Therefore;,b,r can be rewritten in S: A(1)é9+B(7) &+ C(11)=0
terms ofa, 3,7 in the form

where
(1+a)B
O= = — Qv A~
platl)=27 A(7y) = — 2N\ € 0714 @M T 2N\, COg N 71) + (N2 + N2
4 —\P)sin(\ 7)1,
r=1-— ,
BlB(a+1)—27] N N _
B(r1)=Aje "0+ e M [ (N +Ng)SIN(N;71) — NiCOI N T1)],
ZB 2 2\ A= NoT AT
b= =2, C(r1)=—N(AT+AD)e o= NeM I Ni(2N + o)
2_ H )
Under the hypothesis, 3,7 R", Eqgs.(Ala) and(Alb) are X COIA71) H{NT = (NoF AN SIN(Ai71)]
equivalent to FINNZ+ (N A2
Bla+1)<2n, (A2) 1. Slope of straight lines ofS

We indicate with T;);~ the ordered sequence of the ze-
ros of B: T;<T;,1Vi=0 with B(T;)=0Vi=0. The first de-
rivative of —A/B is positive over the whole domain of defi-
Bla+1)>B+ 7. (A3) nition. Indeed one has

while Eq. (Alc) corresponds to the inequality

. d (A> NEMTIIN N T e Mo — N oS N 7y) — (Aot N)SINN TN+ (Aot A )]

dr | B Nje romi+ @M — N\ cog N Ty) — (A, + Ng)Sin(\j71) ]2

with
)\ie}‘”l-l- e_)‘071{—)\i003)\i7'1)—()\0+ )\r)sin()\iTl)}>0 VT]_E UiOOZO(Ti ,Ti+1)CR+.

The latter inequality can be easily proved. Indeed,
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()\r+)\0) Tl>|n(1+()\r+)\o)71)

=eMr M= 4+ (N, 4+ N\g) 71>CO N 7y) +

()\r+)\0)

VR

=\;eM1>e Mo\ ;cog \j7y) + (N + Ng)SIN(N\;7;)]

Ve Uiio(T Tiz1)CR".

2. Envelope of family S

A parametrical(not regulay representation of the enve-

lope of the familyS is obtained derivingt, and &, with
respect tor;. This can be done from the system

A(1)) &0+ B(11) €+ C(71)=0,

9, A(11) o+ d, B(11) €+ 0, C(71) =0,

The result

. .50: gO( Tl)v
v éo:éo(ﬁ)

is given by

Eo(m1)={—N[Ni(1+e o) cog\;7) — \;(e” Pot A7
+eMT) = N2+ NP = Ngh,) (e MoTi—1)
X sin(\j ) H{NjeM 1+ e Mo — (N
+X)sin(\;71) —\jcos\71)]}
and
Eo(71) = (\G{N[COSN 71) — €M TL]+ N sin(N 1)}
+(e Mo —1)[N;cog N 71) — N, SiN(\;71) J(N?
+2AD) + = Ao{e o[ (N2 \P)sin(\;7)
+ 20\, CO N 71)]— 2NjA e~ RoF DTy @M

+e Mo — (Ng+\,)SiN(\;71) —NiCOS\;71) ]}
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