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Lorenz-like systems and classical dynamical equations with memory forcing:
An alternate point of view for singling out the origin of chaos
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An alternate view for the emergence of chaos in Lorenz-like systems is presented in this paper. For such
purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to
the problem of a damped and forced one-dimensional motion of a particle in a two-well potential, with a
forcing term depending on the ‘‘memory’’ of the particle past motion. The dynamics of the original Lorenz
system in the proposed particle phase space can then be rewritten in terms of a one-dimensional first-exit-time
problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental
equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled
analytically deriving a piecewise linearized Lorenz-like system that preserves all the essential properties of the
original model.
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I. INTRODUCTION

The Lorenz dynamical system, originally introduced
Lorenz @1# in order to describe in a very simplified way th
Rayleigh-Bénard problem@2,3#, immediately became impor
tant in itself as one of the most studied low-dimensio
chaotic systems. Even today the Lorenz model represen
paradigmatic example for both theoretical and numerical
vestigations in checking some results in chaos theory@4–7#,
in the study of geometrical properties of dynamical syste
@8–11#, in nonlinear analysis of time series@12,13#, in the
stabilization and synchronization of coupled systems@14–
16#, and so on.

Nevertheless, despite the great attention attracted
past decades, some fundamental and rigorous results
been obtained quite recently, as, for instance, the proof of
existence of the Lorenz attractor@17,18#, usually using
somewhat sophisticated mathematical tools.

On the contrary, our aim here is to provide a descript
of Lorenz system dynamical features, which requires qu
simple analytical tools and, at the same time, allows a v
intuitive inspection in Lorenz-like chaos. Preliminary resu
have been reported in a short communication@19#. Here we
shall give more details and additional results.

Our interpretation will base itself upon the fact that in t
‘‘steady state,’’ i.e., far from the initial transient and when t
memory of the initial conditions has been lost, the Lore
system is equivalent to a suitably constructed second-o
integral-differential equation. This equation can be regard
for instance, as a customary second-order one-dimensi
classical mechanics equation with a peculiar forcing te
The corresponding dynamics can be interpreted as the
dimensional motion of a particle in a conservative qua
two-well potential, subjected to a viscous damping and to
additional force resulting from the past history of the motio
The latter force turns out to be essential for chaos to eme
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as it acts as an ‘‘endogenous’’ forcing able to permanen
sustain the motion even in the presence of friction.

The previous interpretation of Lorenz dynamics actua
leads to a generalization of the Lorenz model to a wider cl
of systems showing similar dynamical properties. We sh
introduce a particular system belonging to such a class
because of its simplicity~piecewise linearity!, will allow us
to study the dynamics of the original model using analyti
tools. Indeed, in the steady chaotic regime~i.e., when the
system permanently lies on its attractor set! the evolution of
a point in the Lorenz phase space consists of amplified
cillations around the two different fixed points. The mo
evident aspect of the chaotic regime is the unpredictability
the instant at which the center of the aforementioned am
fied oscillations changes. The choice of a piecewise line
ized version of the original model will allow us to highligh
this point, while keeping unchanged the peculiar topologi
properties of the Lorenz dynamics. The exact equation ru
the instant of change of the oscillation center will be deriv
and a discontinuous dependence of this instant on the in
conditions will be highlighted. It will also be possible t
write the analytical equations that define the first-return tw
dimensional Poincare´ map for the piecewise linearized sy
tem, which in turn synthesizes the main chaotic features
the model dynamics. Moreover, we shall show that, un
suitable and reasonable conditions, the evolution of the s
tem completely reduces to a one-dimensional chaotic ma

To summarize, starting from our interpretation, we sh
be able to propose a piecewise linearized version of the
renz model, which on one hand has the same dynam
properties as the original system and, on the other hand,
provide analytical tools to explicate the emergence of ch
in Lorenz-like systems.

II. THE LORENZ EQUATION

The original Lorenz system@1# consists of the three first
order ordinary differential equations
©2002 The American Physical Society05-1
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Ẋ52sX1sY,

Ẏ52Y1~r 2Z!X, ~1!

Ż52bZ1XY,

where the dots indicate time derivatives ands, b and r are
positive parameters originally related to the fluid propert
and to the boundary conditions in the Rayleigh-Be´nard prob-
lem. ~Lorenz @1# useds510, b58/3, andr 528.)

The fixed points of system~1! and their corresponding
stabilities depend onr. For r<1 there is only one~stable!
fixed point in (0,0,0). Forr .1 the origin looses its stability
and a pair of new fixed points appear:„6@b(r 21)#1/2,
6@b(r 21)#1/2,r 21…, which are stable in the range 1,r
<r c with r c5s(s1b13)/(s2b21). ~Note that the criti-
cal valuer c exists if and only ifs.b11.) For r .r c all
fixed points are unstable, and the Lorenz system can ex
either periodic or chaotic behavior~see, e.g., Ref.@20# for a
comprehensive exposition on the matter!.

Since we are interested in the caser .1, we can suitably
define the scaled coordinatesx5X/@b(r 21)#1/2,y5Y/@b(r
21)#1/2,z5Z/(r 21), so that the system~1! becomes

ẋ5s~y2x!,

ẏ52y1x1~r 21!~12z!x, ~2!

ż5b~xy2z!,

with fixed points (0,0,0) and (61,61,1).
We now reduce the Lorenz system to a unique differen

equation forx5x(t), whose solution makes a direct calcul
tion of y(t) andz(t) possible. By inserting the expression f
y in terms ofx obtained from the first into the third equatio
of Eq. ~2!, one easily gets

ż1bz5
b

2s F d

dt
~x2!12sx2G , ~3!

whose general solution is given by

z~ t !5e2b(t2t0)S z~ t0!2
b

2s
x2~ t0! D1

b

2s
x2~ t !

1S 12
b

2s DbE
t0

t

ds e2b(t2s)x2~s!. ~4!

We have already stated that we are interested in the evolu
of the Lorenz system in the chaotic steady state, i.e., far f
the initial transient. Thus, we lett0 move back to2` and
obtain the steady-state expression forz(t), which can be
written in the form

z~ t !5
b

2s
x2~ t !1S 12

b

2s D @x2#b~ t !, ~5!
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where we use the square brackets notation@ f #k(t) to indicate
the exponential average of any suitable time functionf on its
past history,

@ f #k~ t ![kE
0

`

ds e2ksf ~ t2s!. ~6!

From now on we shall refer to@ f #k as thek exponentially
vanishing memoryof the functionf or in short itsmemory.
Note that, for the memory@ f #k to exist, it suffices thatf (t)
.O@exp(2ht)#, with h,k, as t→2` ~the time functions
we shall be dealing with are even bounded in this limit!.

To summarize, we insert in the second equation of Eq.~2!
y(t) obtained from the first equation andz(t) given by Eq.
~5! and get for the variablex5x(t) alone in chaotic steady
state the following second-order differential equation w
memory~in fact, an integral-differential equation!:

ẍ1~s11!ẋ1s~r 21!S b

2s
~x221!x

1S 12
b

2s D @x221#bxD . ~7!

One can interpret this equation as the dynamical equa
of a ~unit mass! particle, viscously moving in a compoun
potential energy field consisting of a weighted average~in
the chaotic regimeb/2s,1) of a quartic potential energy
field independent of time~Fig. 1!

U~x!5s~r 21!
~x221!2

4
~8!

and of a quadratic potential energy field

Ut~x!5s~r 21!@x221#b

~x221!

2
, ~9!

whose curvature is given by a suitable memory function
the past motion.

Without the memory term the particle would stop in o
of the minima of the bistable potentialU due to the damping

FIG. 1. The constant-in-time quartic potentialU (s510, b
58/3, r 528). The classical particle representing the Lorenz sys
moves in the potentialU subjected to a viscous damping and to
memory forcing. The minima of the potential wells correspond
the unstable points of the three-dimensional Lorenz system.
5-2
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LORENZ-LIKE SYSTEMS AND CLASSICAL DYNAMICAL . . . PHYSICAL REVIEW E 65 046205
term 2(s11)ẋ. Indeed, theUt contribution yields, through
an exponential average on the past evolution, an ‘‘end
enous’’ forcing term that can permanently sustain the moti
The particle oscillates with growing amplitude around t
minimum of one of the potential well until its energy is su
ficient to allow the crossing of the barrier inx50. As men-
tioned already, the chaotic behavior of the system eme
just in the unpredictability of the instant at which the partic
moves from one well to the other. Trajectories relative
very slightly different initial conditions can produce strong
different sequences in the number of oscillations in e
well. In the following section we shall explain this fact an
lytically.

In order to simplify and standardize the analysis, let
rescale the timet in Eq. ~7! as t→t[@(r 21)b/2#1/2t, to
obtain the equation~hereafter calledLorenz equation!

d2x

dt2
1h

dx

dt
1~x221!x52a@x221#bx, ~10!

where

h5
s11

A~r 21!b/2
, a5

2s

b
21, b5A 2b

r 21
.

Note that, givenb and r, s ~the viscosity parameter in th
original problem! affects both the friction term and the forc
ing term in the Lorenz equation. This fact shows how mu
these ‘‘opposite’’ contributions are in fact strictly related
the equation is to be viewed as a representative of the o
nal Lorenz system. Even if one now considers the Lore
equation as the main subject of the study, one must note
not all the~positive! values ofa, b, h are consistent with
their definitions in terms of the original parametersb, s, r. In
particular, in order to observe chaotic behavior, the follow
inequality must hold:

a.
h@21b~b1h!#

2b
. ~11!

~Further details on the relation between the two sets of
rameters are given in Appendix A.!

Equation ~10! allows us to highlight the role of the
memory forcing term in the Lorenz system dynamics. F
this purpose it is interesting to compare the Lorenz equa
with other examples of chaotic nonlinear~nonautonomous!
systems as, for instance, the inverse Duffing equatioẍ

1h ẋ1(x221)x5A cos(Vt), which describes a sinusoidall
forced quartic oscillator@21#, or more appropriately the para
metrically forced equation

ẍ1h ẋ1~x221!x52A cos~Vt !x. ~12!

Note that in the latter cases the motion is sustained by ex
nally assigned forcing terms, while in the case of the Lore
equation the motion is self-sustained by the endogenous
2a@x221#bx. In Figs. 2 and 3 we give a numerically ob
tained comparison between the phase portraits of the Lo
04620
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equation and of Eq.~12! with parameters (a,b,h), and
(A,V) suitably chosen in order to get similar ranges of m
tion. Note that the endogenous Lorenz forcing term, mim
by 2A cos(Vt)x, is in fact neither monochromatic nor wit
vanishing average value.

III. THE GENERALIZED LORENZ SYSTEM

The Lorenz equation~10! can be usefully recast in th
form

d2x

dt2
1h

dx

dt
1$q~x!1a@q~x!#b%F8~x!50, ~13!

where the prime indicates the derivative with respect tox and
in our caseF(x)5x2/2 andq(x)5x221. Such an equation
can be interpreted as the description of the motion of a u
mass particle subjected to a viscous force2hdx/dt and
interacting with a potential fieldF through a ‘‘dynamically
varying charge’’qt(x)5q(x)1a@q(x)#b . This charge de-
pends both on the instantaneous particle positionx(t) @by
means of the termq(x)# and on the past evolution~by means
of the memory charge@q(x)#b). The coupling of@q#b with
the fixed potential fieldF acts as an endogenous forcin
term that can sustain the motion even in the presence

FIG. 2. Typical chaotic phase portrait for the original Lore
model (h51.31,a510.30,b50.216).

FIG. 3. Typical chaotic phase portrait for the inverse parame
cally forced Duffing equation (h51.31, A54.2, V50.99). The
chaotic evolution of this system is characterized by the competi
between a viscous friction and a forcing term with the same str
ture of the right hand side of the Lorenz equation. Here, howe
the forcing is externally given and the memory is replaced b
known function of time.
5-3
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R. FESTA, A. MAZZINO, AND D. VINCENZI PHYSICAL REVIEW E65 046205
friction, and the chaotic behavior can actually arise from
synergy between this term and the viscosity. Put in the fo
~13!, the Lorenz equation is arranged to be generalized
generic chargeq(x) interacting with a generic potential fiel
F(x). Correspondingly, it is possible to obtain ageneralized
Lorenz systemwhose ‘‘x projection’’ ~far from the initial
transient! yields Eq.~13!. Indeed, by inverting the calcula
tion followed to derive Eq.~13! from system~2!, one easily
gets the generalized Lorenz dynamical system

ẋ5s~y2x!,

ẏ52y1x1~r 21!~12z!F8~x!, ~14!

ż52bz1bF1

2
q8~x!~y2x!1q~x!11G .

Therefore, the specific Lorenz model can be viewed
singled out from a quite general class of dynamical syste
that can exhibit chaotic behavior, their common essen
property being an exponentially vanishing memory effect
gether with a viscous damping.

Equations~13! and~14! are related to Eq.~7! by assuming
as potential energy field the quantityU5(b/2s)U1(1
2b/2s)Ut with

U5s~r 21!E q~x!F8~x!dx and Ut5s~r 21!@q#bF.

~15!

Obviously, any choice ofq andF should maintain the main
properties of the Lorenz model, i.e., correspond to a two-w
piecewise differentiable potential energyU(x), such that
U(x)→` as uxu→`.

We shall now focus our attention on a particular cho
for q andF, which will maintain all the qualitative proper
ties of the Lorenz system and, at the same time, will allow
to deal with chaos analytically.

IV. THE PIECEWISE LINEARIZED LORENZ SYSTEM

A. Linearization near fixed points

As already noted, the chaotic behavior of the Lorenz s
tem essentially depends on the unpredictability of the
stants whenx change its sign: as long as it keeps const
sign the system evolution is certainly nonlinear, and nev
theless not ‘‘chaotic’’ at all. This fact suggests a slight mo
fication of the original form of the Lorenz system, in order
single out analytically the origin of chaos without facing a
difficulties arising from nonlinear features. We thus set
Eqs. ~13! and ~14! F(x)5uxu and q(x)5uxu21 obtaining
~for xÞ0) the piecewise linear Lorenz-like equation

d2x

dt2
1h

dx

dt
1$uxu211a@ uxu21#b%sgn~x!50, ~16!

where sgn(x)[uxu/x. The corresponding piecewise linea
ized dynamical system, with the original choice of para
eters, is then given by
04620
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ẋ5s~y2x!,

ẏ52y1x1~r 21!~12z! sgn~x!, ~17!

ż52bz1bsgn~x!
x1y

2
.

Our assumptions onF and q correspond in Eq.~7! to
U(x)5s(r 21)(uxu21)2/2 and Ut(x)5s(r 21)@ uxu
21#b(uxu21). Thus, we are faced with a simplified mode
obtained by replacing the constant-in-time quartic poten
with a piecewise quadratic one resulting from the superp
tion of two parabolas with vertex in61 and truncated atx
50 ~Fig. 4!. The two-well character ofU is obviously main-
tained as well as the piecewise differentiability. The repla
ment of the original potential actually corresponds to a l
earization of the system around both unstable fixed po
(61,61,1), with the matching performed inx50. It appears
that the chaotic behavior of the original model does not
pend on the differentiability inx50. One can guess tha
other classes of dynamical systems also can be transfor
in a piecewise linearized version by means of the same
erations.

It is easy to check that the fixed points of Eq.~17! are
(61,61,1) and that the equation ruling their local stabili
is the same as for the original Lorenz system with parame
b, s, r[(r 11)/2. In particular, if s.b11, the critical
value of r for our piecewise linear system~17! is given by
r c

( l in )52r c21. In Figs. 5 and 6 two chaotic phase portra
for systems~2! and ~17! are shown, corresponding to th
same choice ofb ands, and different choices ofr in order to
preserve the relationships betweenr and the proper corre
sponding critical value.

While dealing with system~17!, the main simplification is
that it is separately linear forx,0 andx.0 and can thus be
analytically solved in each region. Indeed, by applying t
operator (d/dt1b) to each side of Eq.~16! one obtains the
equation

FIG. 4. Quartic potentialU for the original Lorenz system
~dashed line! and for the piecewise linearized system~full line!. The
linearization of the Lorenz system maintains the qualitative sh
of the constant-in-time potential.
5-4
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LORENZ-LIKE SYSTEMS AND CLASSICAL DYNAMICAL . . . PHYSICAL REVIEW E 65 046205
d3x

dt3
1~b1h!

d2x

dt2
1~11bh!

dx

dt

1b~11a!@x2sgn~x!#50, ~18!

which can be explicitly solved separately on each side
x50. The nonlinearity of the model is simply reduced to
change of sign of the forcing term6b(11a) when x
crosses the planex50, henceforth denoted withp @22#. As
we shall see, the crossing times are somewhat unpredict
as they result from the discontinuous solutions of an~inci-
dentally transcendental! equation. Our piecewise linearize
system will thus turn out to be an important tool to analy
cally investigate the emergence of chaos in Lorenz-like s
tems. The main advantage of the piecewise linearizatio
that one has to deal only with the simplest nonlinearity, i
an isolated~not eliminable! discontinuity ~see, e.g., Refs
@23–27# for other examples of piecewise linear chaotic d
namical systems!.

B. Analysis of the motion

Let us now consider in detail the second-order integ
differential Eq.~16!, which describes the evolution in time o
x for the piecewise linearized system in the chaotic ste
state. It is equivalent to a third-order nonlinear different
equation whose phase space is described by the coordi
x, ẋ, ẍ ~with a small abuse of notation from this time on w
shall indicate with the dot the differentiation with respect
t). Solutions of Eq.~16! can be easily calculated with too

FIG. 5. Typical chaotic phase portrait for the original Lore
system (s510, b58/3, r 528).

FIG. 6. Typical chaotic phase portrait for the piecewise line
ized Lorenz system (s510, b58/3, r 555).
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of the customary analysis on each side ofx50. To obtain a
global solution, such partial solutions should be matched
x50 under the reasonable assumptions that the positiox,
the velocity ẋ, and the memory@ uxu#b are continuous@28#.
Notice that, in contrast, when crossing the planep, the ac-
celerationẍ turns out to be undefined. However, ifx( t̃)50,
referring to the left and right time limitsẍ( t̃2) andẍ( t̃1), it
appears from Eq.~16! that they are related by the equatio
ẍ( t̃2)1 ẍ( t̃1)522h ẋ( t̃). In the sequel we shall refer to
ẍ( t̃2) and ẍ( t̃1) as the acceleration ‘‘immediately’’ befor
and ‘‘immediately’’ after the crossing, respectively.

Since Eq.~16! is invariant under the transformationx→
2x, t→t, we can focus our attention only on one of the tw
regions, e.g.,x.0, and describe the motion in this half-spa
~the evolution in its twin half-space being recovered throu
the changex→2x). Clearly, this is equivalent to putting
‘‘rigid wall’’ in x50 and looking at the crossing ofp as an
elastic collision.

In summary, according to the previous scheme, the sys
evolution in time is completely described by the followin
steps:~1! motion for x.0; ~2! collision againstp and dis-
continuity of ẍ; and~3! inversionx→2x and matching with
a new solution defined in the regionx.0 again.

1. Motion in the half-space xÌ0

If we definej[x21, Eq. ~18! assumes a simple form

ĵ 1~b1h!j̈1~11bh!j̇1b~11a!j50, ~19!

which is a linear third-order differential equation~homoge-
neous and with constant coefficients!. As a consequences o
the Routh-Hurwitz theorem@29#, a critical valueac for the
parametera exists, i.e.,

ac5
~11bh!~b1h!

b
21. ~20!

For a.ac the fixed points are unstable saddle focus with
real negative eigenvalue2l0 and a pair of complex conju
gates eigenvaluesl15l r1 il i ,l̄15l r2 il i .

For the sake of simplicity we shall indicate with (0,t1)
the time interval between two consecutive collisions in t
steady state of the system. Without loss of generality
assumex(0)50 andẋ(0).0. Then, it can be easily show
that in the time interval (0,t1) the motion in the phase spac
j, j̇, j̈ (j.21) is completely described by the equation

j~t!5M~t!M~0!21j0 , ~21!

where we have defined

j~t![S j~t!

j̇~t!

j̈~t!
D , j0[S j0

j̇0

j̈0

D [S 21

j̇~0!

j̈~01!
D ,

and
-

5-5
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M~t!5S Re~el1t! Im~el1t! e2l0t

Re~l1el1t! Im~l1el1t! 2l0e2l0t

Re~l1
2el1t! Im~l1

2el1t! l0
2e2l0t

D .

„Note that, for a.ac , M(0) is always invertible since
detM(0)5l i@l i

21(l r1l0)2# andl i.0.… The eigenvalues
of the matrix M(t)M(0)21, which connects the vecto
j(t) to its initial valuej0, areel1t,el̄1t,e2l0t, with corre-
sponding~constant-in-time! eigenvectors

v1[S 1

l1

l1
2
D , v2[S 1

l̄1

l̄1
2
D , v3[S 1

2l0

l0
2
D .

With respect to the base$v1 ,v2 ,v3% one has

j~t!5elrt~c1el itv11c2e2l itv2!1c3e2l0tv3 . ~22!

For the saddle pointj50 there exist a stable one
dimensional manifoldW s corresponding tov3,

W s5$pv3up.21%

and an unstable two-dimensional manifoldW u generated by
v1 ,v2 ~see Fig. 7!,

W u5H p
v11v2

2
1q

v12v2

2i
up.21, qPRJ .

The evolution of the linearized system in the interval (0,t1)
is the combination of an exponential decay alongW s and of
an amplified rotation onW u. To determine the relative
quickness of each component of the motion with respec
the other, consider that from Eq.~19! it is easily checked tha
l022l r5b1h, and sol0.l r ,;a,b,h. Therefore, the ex-
ponential decay along the stable manifoldW s is always

FIG. 7. Stable and unstable manifolds for the pointj50 in the

phases spacej, j̇, j̈. The evolution of the piecewise linearize
system on each side ofp consists of an exponential decay alon
W s and of an amplified oscillations onW u.
04620
to

more rapid than the exponential oscillating growth on t
unstable manifoldW u, the parameter controlling this differ
ence beingb1h.

Although the fixed points are saddle focus, it appears t
the piecewise linearized system does not exhibit Shilnik
chaos@30# owing to the absence of an homoclinic orbit.

2. p collision and inversion

To complete the description of the piecewise lineariz
system dynamics, we consider the instantt1 at which the
first collision occurs. At this time, as already remarked, t
trajectory coming from the half-spacex.0 must be matched
with the solution defined again in the same region, but w
corresponding new ‘‘initial conditions’’@31#

j1521,

j̇152 j̇~t1!, ~23a!

j̈152 j̈~t1
1!5 j̈~t1

2!12hj̇~t1!,

or, in matrix form

j15IDj~t1
1! ~23b!

with

D[S 1 0 0

0 1 0

0 22h 21
D and I[S 1 0 0

0 21 0

0 0 21
D .

The matrixD accounts for the acceleration discontinuity
x50, while I yields the sign inversion after the impac
From Eqs.~21! and~23b! it follows that the velocity and the
acceleration immediately after the collision are related to
initial conditions by the operatorP(t)[IDM(t)M(0)21,
according to the formula

j15P@t1~j0!#j0 . ~24!

Notice the highlighted dependence oft1 on j0, which re-
veals the nonlinear character of this important relationsh

Starting from the above results, the very origin of chaos
the piecewise linearized Lorenz system will be identified a
discussed in the following section. We shall also show t
the basic mechanisms for chaos to emerge apply also to
original Lorenz system.

C. Dependence oft1 on initial conditions

1. Unpredictability of the crossing time

As already observed, the instant at which the planep is
crossed, strongly depends on the initial conditions. This f
is strictly related to the chaotic behavior of Lorenz-like sy
tems. Let us now study in some detail this topic for t
piecewise linearized model.

The instantt1 at which the first collision occurs is define
by the conditionj(t1)521. From the first line of Eq.~21!,
5-6
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t1 is thus the smallest positive solution of the transcende
equation

215C1elrt1cos~l it1!1C2elrt1sin~l it1!1C3e2l0t1,

~25!

whereC1 , C2 , C3 are linearly related to initial conditions
The residence timet1 is therefore the first intersection o
the graphs of g(t1)52C3e2l0t121 and h(t1)
5C1elrt1cos(lit1)1C2e

lrt1sin(lit1). Sinceg is a decreasing
exponential function andh an oscillating function with grow-
ing amplitude, one can easily understand why even a l
modification of initial conditions can produce a discontin
ous variation oft1 ~Fig. 8!.

In conclusion, the unpredictability of the residence time
closely connected to the discontinuous character of the s
tions of Eq. ~25!. The chaotic behavior for the piecewis
linearized system clearly stems from such unpredictabi
Our claim is that an entirely analogous situation exists a
for the original Lorenz model. We shall return, however,
more detail on this important analogy in the sequel.

2. The residence timet1 as a function of j̇0 and j̈0

We now explicitly investigate the dependence oft1 on the
initial velocity and acceleration. As previously remarked, t
function t15t1( j̇0 ,j̈0) is implicitly defined as the smalles
positive solution of Eq.~25!. SinceC1 , C2 , C3 are linearly

FIG. 8. Graphical interpretation of the discontinuous charac
of t1 for small changes of the initial condition. The full line is th
curveg(t1), the dashed line ish(t1) for the parametersa56.50,
b50.19, andh50.78. Bullets denotes the first intersection b
tweeng andh, whose abscissa defines the residence time.

FIG. 9. Slope of the straight lines of the familyS (a56.50,b
50.19, andh50.78). @See Eq.~26! and Appendix B for the exac
definition.#
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related to the initial conditions, Eq.~25! can be rewritten in
terms of j̇0 and j̈0. In this form it describes a familyS of
straight lines in the plane$j̇0 ,j̈0% parametrized byt1,

S: A~t1!j̇01B~t1!j̈01C~t1!50 ~26!

@see Appendix B for the explicit expression of the coef
cientsA(t1), B(t1), C(t1)].

Let us denote with (Ti),i>0 the ordered sequence of th
zeros ofB(t1). Note that one always hasT050. The slope
of the straight lines ofS,2A/B, and their ordinate forj̇0
50, i.e., 2C/B, have their singularities inTi ,i>0. Both
these functions are only asymptotically periodic because
the presence of terms proportional toe2l0t1, which become
negligible only for larget1 ~Figs. 9 and 10!.

In each interval (Ti ,Ti 11),i>0, the function2A/B is
growing everywhere~see Appendix B! and varies from2`
and 1`. Therefore, ast1 increases, the straight lines ofS
rotate counterclockwise and at the same time translate s
ing from thej̈0 axis ~obtained fort150) ~Fig. 11!.

The envelope of the familyS is a curve

g:H j̇05 j̇0~t1!,

j̈05 j̈0~t1!,

which looks similar to an elliptic spiral~Fig. 12!. ~A para-
metrical representation ofg is given in Appendix B.!

From Eq. ~26! the contour lines of the functiont1 are
parts of straight lines in the plane (j̇0 ,j̈0). Indeed, according
to the definition, each line ofS is in fact a contour line fort1
only where its points do not belong to another line cor
sponding to a smaller value oft1 and, furthermore, only
where their abscissas correspond to positive values ofj̇0.
Rather than a family of straight lines, the function conto
lines are rays or segments according to the constant valu
t1.

For t1 ranging from 0 toT2 these lines perform a com
plete counterclockwise ‘‘rotation,’’ starting from thej̈0 axis.
Thus, they cover the entire half-planej̇0>0 except the re-
gion inside their envelope; from this first rotation one obta
a set of rays~Fig. 13!.

r

FIG. 10. Ordinate forj̇050 of the straight lines of the familyS
(a56.50, b50.19, andh50.78). @See Eq.~26! and Appendix B
for the exact definition.#
5-7
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Subsequently, fort1 ranging fromT2 to T4 the contour
lines become segments of variable orientation and conta
in the region delimited by the curve already generated fr
the first rotation and the new envelope of the second se
straight lines. This behavior repeats itself;t1
P@T2i ,T2i 11#,i>0. Because of the aperiodic character
the functions involved, the curveg outlines in the positive
half plane a structure consisting of ‘‘pseudoelliptic’’ annu
Moving counterclockwise along each of these annula,t1
grows continuously. On the contrary, passing through
border that separates two different bands, one meets dis
tinuities in the dependence oft1 on initial conditions.

The curveg ‘‘winds’’ round the point P0[(l0 ,2l0
2)

~see Fig. 12!. For (j̇0 ,j̈0)→(l0 ,2l0
2) one hast1→`, since

for these initial conditions one obtainsC15C250 and the
system exactly lies on the stable manifoldW s. Its motion is
in this case an exponential decay towards the fixed poinj
50.

The previous observations allow to easily guess the st
ture of the graph oft15t1( j̇0 ,j̈0) shown in Fig. 14. It
should be noted thatt1 shows instability with respect to th
initial conditions only in a limited subset of the half plan
j̇0>0. As we shall see, it is natural to expect that in t
chaotic regime the system is quickly attracted inside t
region.

FIG. 11. Family of curvesS @defined in Eq.~26!# for a56.50,
b50.19, andh50.78.

FIG. 12. Envelopeg of the family of straight linesS looks
similar to a spiral (a56.50, b50.19, andh50.78).
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D. The piecewise linearized model as a one-dimensional map

1. The p-plane Poincarémap

At this point of our study we have analyzed in some de
the unpredictability of the time at which the system cros
the planep. To completely motivate the chaotic dynamics
the piecewise linearized system and thus of the origi
model, we must, however, add some further results on
attracting set of the system.

All results obtained in the preceding section can be ea
extended to thenth collision againstp. Specifically, denot-
ing with jn the array assigning position, velocity, and acc
eration immediately after thenth collision

jn[S 21

j̇n

j̈n

D ,

we have@similar to Eq.~24!#

jn5P~tn!jn21 , ~27!

where we have denoted withtn the nth residence time, i.e.
the time interval between the (n21)th collision and thenth
one.

The first line of Eq.~27! gives tn in terms of j̇n21 and
j̈n21: the dependence of this time on the (n21)th initial

FIG. 13. Contour lines of the residence timet1 as a function of

the initial conditions (j̇0 , j̈0) for t1P@0,T2# (a56.50, b50.19,
andh50.78).

FIG. 14. Graph oft1 as a function of the initial conditions
obtained by numerical solution of the transcendental Eq.~25! (a
56.50,b50.19, andh50.78).
5-8
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conditions has already been discussed in Sec. IV C 2. Kn
ing tn , the other two lines allow to relate the velocityj̇n and
the accelerationj̈n to j̇n21 andj̈n21. Equation~27! defines a
two-dimensional first-return Poincare´ map between (j̇n ,j̈n)
and (j̇n21 ,j̈n21) obtained from the sectionj521 of the
phase spacej,j̇,j̈. We recall that, in spite of its appearanc
the map~27! is in fact nonlinear, since the matrixP depends
on tn , which is a transcendental discontinuous function
the (n21)th initial conditions. Moreover, under suitab
conditions, the two-dimensional map for the linearized s
tem practically reduces to a one-dimensional map.

2. Approximation of the system with a one-dimensional map

It has been already shown that forj.21 the motion in
the phase space has the form~22!

j~t!5c1el1tv11c2el̄1tv21c3e2l0tv3 ,

wherel0 andl r5Re(l1) satisfy the equationl022l r5b
1h, which in turn impliesl0.l r . As a consequence th
evolution in the phase spacej, j̇, j̈ consists both of a
‘‘rapid’’ decay towardsj50 along the stable manifoldW s

and of a ‘‘slow’’ amplified oscillation onW u. We thus expect
the phase trajectories to be strongly attracted on the uns
manifold and, once onW u, to slowly spiral outwards. Pro
vided trajectories start close enough toW u, then they meet
thep-plane very close to its intersection withW u itself, i.e.,
along the straight line

L 2:H j̈12l r j̇1~l r
21l i

2!50

j521.
~28!

Let us assume that the attraction towards the unstable m
fold is very strong and thus it takes place almost instan
neously ~the goodness of this assumption is controlled
b1h). Under this hypothesis all trajectories approximate
hit p along the straight lineL 2. Thus, from Eq.~23b!, it
follows that, immediately after each collision, the syste
necessarily lies very close to the straight line

L 1:H j̈12~h1l r !j̇2~l r
21l i

2!50,

j521.
~29!

Therefore, the following relation between velocity and acc
eration is expected to hold approximately:

j̈n12~h1l r !j̇n2~l r
21l i

2!50. ~30!

From Eqs.~16! and ~30! an analogous linear dependen
between the velocity and the memory follows

~h12l r !j̇n2awn112~l r
21l i

2!50, ~31!

wherewn denotes theb-memory ofj evaluated at thenth
collision. As a consequence, in the limit we have consider
the attracting set for the map~27! is L 1 and, therefore, it
reduces to a one-dimensional map.
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Since in the chaotic steady state the velocity and the
celeration, which define the initial conditions for the traje
tory after each impact, are not independent, the timetn can
be expressed as a function ofj̇n21 alone:tn5tn( j̇n21) ~see
Fig. 15!. The behavior of this map is easily understood if w
refer to the graph oft1 as a function ofj̇0 and j̈0 ~see Fig.
14!. Indeed, in the chaotic regimeL 1 is superimposed to the
region of the plane (j̇n21 ,j̈n21) contained byg, wheret1
shows unstable behavior with respect to a change in the
tial conditions~Fig. 16!. For those values ofj̇n21, for which
L 1 passes through the same ‘‘pseudo-elliptic’’ corona,tn
slowly changes with varying crossing velocity. On the co
trary, whenL 1 intersects the boundary between two diffe
ent coronas,tn shows a discontinuity in its dependence
j̇n21 ~Fig. 15!.

The linear dependence between velocity and accelera
immediately after each collision implies that the Poinca´

map ~27! becomes one dimensional, e.g., a map betweenj̇n

and j̇n21. Figure 17 shows this fact fora56.50, b50.19,
andh50.78. By a simple inspection of the derivatives co
responding to the fixed points of the map one can ea
check that they are all unstable, so that the map produc
chaotic behavior. Note that the discontinuities simply cor

FIG. 15. Map of the first-exit timetn as a function of the cross

ing velocity j̇n , obtained by numerical solutions of Eqs.~27! and
~30! (a56.50,b50.19, andh50.78.)

FIG. 16. During chaotic evolution the couple of crossing con

tions (j̇n ,j̈n) is attracted on the straight lineL 1, which is super-
imposed on the instability region of the residence timetn ~identified
by the curve g). The graph refers to the valuesa56.50, b
50.19, andh50.78.
5-9
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spond to the analogous ones in the functiontn5tn( j̇n21),
evaluated along the straight line given by Eq.~30! and drawn
in Fig. 16.

For the sake of completeness, we turn now to the desc
tion of the piecewise linearized system in the original ph
space x, ẋ, ẍ. There the system has two fixed poin
(61,0,0). For each one there exists a stable manifold

W 6
s 5$pv31~61,0,0! up:71% ~32!

and an unstable manifold

W 6
u 5H p

v11v2

2
1q

v12v2

2i
1~61,0,0!u

p:71 andqPRJ . ~33!

During the evolution, the trajectories are rapidly attracted
the unstable manifold relative to the half plane where th
belong~Fig. 18!. Thus, immediately after the crossing of th
p plane, the phase point lies on one of the straight lines

ẍ12~h1l r !ẋ1~l r
21l i

2!sgn~ ẋ!50

x50,

while the memory and the velocity are linearly related a
cording to equation

~h12l r !ẋn2a sgn~ ẋn!wn112~l r
21l i

2!50. ~34!

As for the crossing of thep plane, the system can, therefor
be described by a one-dimensional map. To get the m
tn5tn( ẋn21) and ẋn5 ẋn( ẋn21) from the analogous ones i
the rigid wall scheme, one has simply to consider thatj̇n

coincides withuẋnu.
The reader should note that all the maps we have draw

the preceding figures have been obtained by numeric
solving the analytical Eq.~27!, which exactly definestn ,
j̇n11, and j̈n11, and they have not been computed by n
merical integration of the differential system~as usual for

FIG. 17. Velocityj̇n at thenth crossing of the planex50 as a

function of the velocityj̇n21 (a56.50,b50.19,h50.78). How-
ever, notice that, in the steady-state chaotic evolution, the ma

restricted to the range (0,1.2) of possible values ofj̇n21.
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nonsolvable dynamical systems, such as the Lorenz orig
one!. Thus, the use of numerical tools has been required o
because of the transcendental character of the conce
equation.

We explicitly remark that, in general, the attraction t
wardsW u is not infinite, but nevertheless more rapid th
the amplified rotation on the unstable manifold~remember
that l022l r5b1h.0 ;a,b,h). Therefore, we can ex
pect that, ifb1h is finite, the attractor set is not exactly th
straight lineL 1, but a narrow ‘‘strip’’ that containsL 1. This
strip intersects the region of the graph oftn where the resi-
dence time is strongly dependent on initial conditions and
mechanism for chaos to arise is absolutely the same.
numerical simulations for finiteb1h are in excellent agree
ment with these predictions and then we do not show th
corresponding graphs here, since they are practically in
tinguishable from the graphs we have already discussed

V. COMPARISON WITH THE ORIGINAL LORENZ
SYSTEM

We conclude our analysis by showing some simulated
merical results. Before doing that, some remarks are wo
discussing. We previously consideredx,ẋ,ẍ as independen
coordinates in the phase space because of their phy
meaning: it is more intuitive to speak about accelerat
rather than of memory of the system. Unfortunately, if w
want to ‘‘assign initial conditions’’ to the original Lorenz
system after the crossing of the planep, we cannot consider
the acceleration and the velocity since from Eq.~10! they are
not independent variables inx50. Indeed the relationẍn

1h ẋn50 always holds, while the memory is not knowna
priori . As a consequence, we have to consider as indep
dent initial conditions the position, velocity, and memor
However, it is worth remarking that the comparison betwe
the Lorenz system and the piecewise linearized one is c
pletely meaningful. This is because for the latter modelwn21

is easily known in terms ofj̇n21 andj̈n21 from Eq.~16!: for
the linearized system the choice ofj̈n21 or of wn21 is abso-
lutely equivalent.

is
FIG. 18. Attraction of the piecewise linearized system on

manifolds W 6
u . The evolution of the system on each side ofp

consists of a ‘‘rapid’’ exponential decay along the stable manif
and of a ‘‘slow ’’ amplified oscillation on the unstable manifold.
5-10
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Since we are interested in the behavior of the Lorenz s
tem in the chaotic steady state, all the following results
thus obtained via the numerical integration of the stea
state differential system

ẋ5v,

v̇1hv1~x221!x52awx, ~35!

ẇ52bw1b~x221!,

where noww5@x221#b . This dynamical system, as alread
proved, is equivalent to the system~2! far from the initial
transient.

We can now turn to the comparison with the piecew
linearized system. For the original Lorenz model we ha
computed the maps that relatetn and uẋnu to uẋn21u, respec-
tively, by numerical integration of the system~35! ~the nota-
tions are the same as in the previous section!. Figures 19 and
20 show the results we obtained: the qualitative behavio
these maps is very similar to that of the analogous maps
the piecewise linearized system. As we shall see, the me
nism for chaos to arise is indeed the same. Note that
maps in Figs. 19 and 20 are not perfectly univocal: obviou
this is due to the fact that, in general, the Lorenz system d
not reduce exactly to an one-dimensional map when
planex50 is crossed.

FIG. 19. Maptn5tn(uẋn21u) for the original Lorenz system
obtained by numerical integration of the system~35! (a510.30,
b50.216, andh51.31).

FIG. 20. Map betweenuẋnu and uẋn21u for the original Lorenz
system, obtained by numerical integration of the system~35! (a
510.30,b50.216, andh51.31).
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From direct computation it appears that the residence t
around a fixed point depends on the initial conditions in
way similar to that of the linearized system~Fig. 21!. There
is a region in whicht1 varies continuously with varying
initial conditions and a region~Figs. 21 and 22! of strong
instability. In the latter regiont1 changes continuously alon
each ‘‘annulus’’ of the ‘‘spiral,’’ whereas it shows abrupt dis
continuities crossing the boundary of each annulus. As
pected, the system is attracted to that region~Fig. 23! and the
maps in Figs. 19 and 20 derive from the overplotting b
tween Figs. 23 and 22.

The chaos actually emerges due to the combination of
steplike first-exit-time~Fig. 19! and of the piecewise return
map ~Fig. 20! for initial conditions. This mechanism is th
same as for the linearized model, for which we gave an a
lytical description. The results we obtained for the piecew
linearized system, therefore, provide in our opinion a use

FIG. 21. Graph oft1 as a function of the crossing conditions fo
the original Lorenz system, obtained by numerical integration of
system~35! for different initial conditions (a510.30, b50.216,
andh51.31).

FIG. 22. Graph oft1 as a function of the crossing condition
viewed from the above in the case of the original Lorenz syst
(a510.30,b50.216, andh51.31).
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enlightening tool to understand both the original Lorenz s
tem and its eventual generalizations.

Finally, in order to point out the connection between t
original Lorenz system and its piecewise linearized versi
it is illuminating to compare the tentlike map shown by L
renz in his original work@1# with the analogous map for ou
simplified system. Describing the relation between two c
secutive maxima of the coordinatez(t), Lorenz found a
univocal tent-like map~Fig. 24!. For our linearized system
we obtain similar results~see Fig. 25!. The growing branch
of the map is approximately linear, since for small values
z the system evolution is confined in a half-space and, th
it essentially consists of an exponentially amplified oscil
tion. For large values ofz, the map has the same shape of t
Lorenz tentlike map. The linear growing of the left branch
the map is due to the simplification we made on the evo
tion on each side ofx50. The shape of the right branc
shows that the piecewise linear system keeps all the c
plexity of the Lorenz model, which can be attributed to t
unpredictability of thex50 crossing. The latter property i
the very origin of chaos in Lorenz-like systems.

VI. CONCLUSIONS

The main conclusions from the present paper can be s
marized as follows. We have reformulated in a classical m

FIG. 23. Map between the crossing memorywn and the corre-

sponding crossing velocityuẋnu for the original Lorenz system (a
510.30,b50.216, andh51.31).

FIG. 24. Tentlike map for the original Lorenz system (b58/3,
s510, andr 528). Mn denotes thenth maximum of the coordinate
z(t).
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chanics form the dynamics of Lorenz-like systems a
showed that its three-dimensional phase-space dynamics
be mapped into a one-dimensional motion of a particle
cillating in a conservative quartic two-well potential, su
jected to a viscous dissipation and to a memory forci
Starting from this interpretation, we have introduced a pie
wise linearized version of the Lorenz system~belonging to a
larger family of Lorenz-like systems!, which substantially
has the same properties of the original model with the
vantage that it allows an analytical treatment.

The most evident aspect of chaotic regime is the unp
dictability of the instant at which the center of the partic
amplified oscillation changes. Chaos arises due to the c
bination of the steplike behavior of this time with the piec
wise return map defining the crossing conditions. This asp
has been singled out analytically, focusing on the piecew
linearized version. There, the exact equation for the time
which the oscillation center changes, has been derived
the discontinuous dependence of this time on the cros
conditions has been shown analytically.

By means of numerical simulations we have verified th
the highlighted mechanisms for the chaos to emerge sur
also for the fully nonlinear Lorenz system, where analytic
techniques are not applicable.
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APPENDIX A: PARAMETERS a, b, h

In the Lorenz system, the following conditions fors,b,r
have to be satisfied in order to have three instable fi
points:

FIG. 25. Tentlike map for the piecewise linearized systemb
58/3, s510, andr 5100).
5-12



-

e-

-

LORENZ-LIKE SYSTEMS AND CLASSICAL DYNAMICAL . . . PHYSICAL REVIEW E 65 046205
s,b,r PR1, ~A1a!

r .1, ~A1b!

s.b11, ~A1c!

r .r c . ~A1d!

The parametersa,b,h are defined as follows:

a5
2s

b
21, b5A 2b

r 21
, h5

s11

A~r 21!b/2
.

From Eqs. ~A1a! and ~A1b! it immediately follows that
a,b,h are positive too. Therefore,s,b,r can be rewritten in
terms ofa,b,h in the form

s52
~11a!b

b~a11!22h
,

r 512
4

b@b~a11!22h#
,

b52
2b

b~a11!22h
.

Under the hypothesisa,b,hPR1, Eqs.~A1a! and~A1b! are
equivalent to

b~a11!,2h, ~A2!

while Eq. ~A1c! corresponds to the inequality

b~a11!.b1h. ~A3!
04620
Specifically, Eqs.~A1a!, ~A1b!, and~A1c! then imply

a.
h

b
.1. ~A4!

Finally, Eq. ~A1d! can be rewritten in terms of new param
eters as

a.
h@21b~b1h!#

2b
, ~A5!

from which necessarily Eq.~A4! follows.

APPENDIX B: FAMILY S
The family of straight linesS is defined by the equation

S: A~t1!j̇01B~t1!j̈01C~t1!50

where

A~t1!522l il re
2l0t11elrt1@2l il rcos~l it1!1~l0

21l i
2

2l r
2!sin~l it1!#,

B~t1!5l ie
2l0t11elrt1@~l r1l0!sin~l it1!2l icos~l it1!#,

C~t1!52l i~l i
21l r

2!e2l0t12l0elrt1@l i~2l r1l0!

3cos~l it1!1$l i
22~l01l r !l r%sin~l it1!#

1@l i~l i
21~l01l r !

2#.

1. Slope of straight lines ofS
We indicate with (Ti) i>0 the ordered sequence of the z

ros ofB: Ti,Ti 11; i>0 with B(Ti)50; i>0. The first de-
rivative of 2A/B is positive over the whole domain of defi
nition. Indeed one has
2
d

dt1
S A

BD5
l ie

lrt1@l ie
lrt11e2l0t1$2l icos~l it1!2~l01l r !sin~l it1!%#@l i

21~l01l r !
2#

l ie
2l0t11elrt1@2l icos~l it1!2~l r1l0!sin~l it1!#2

with

l ie
lrt11e2l0t1$2l icos~l it1!2~l01l r !sin~l it1!%.0 ;t1Pø i 50

` ~Ti ,Ti 11!,R1.

The latter inequality can be easily proved. Indeed,
5-13
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~l r1l0!t1. ln~11~l r1l0!t1!

⇒e(lr1l0)t1.11~l r1l0!t1.cos~l it1!1
~l r1l0!

l i
t1

⇒l ie
lrt1.e2l0t1@l icos~l it1!1~l r1l0!sin~l it1!#

;t1Pø i 50
` ~Ti ,Ti 11!,R1.
-

2. Envelope of familyS
A parametrical~not regular! representation of the enve

lope of the familyS is obtained derivingj̇0 and j̈0 with
respect tot1. This can be done from the system

A~t1!j̇01B~t1!j̈01C~t1!50,

]t1
A~t1!j̇01]t1

B~t1!j̈01]t1
C~t1!50.

The result

g:H j̇05 j̇0~t1!,

j̈05 j̈0~t1!

is given by
w,

M

04620
j̇0~t1!5$2l0@l i~11e2l0t1!cos~l it1!2l i~e2(l01lr )t1

1elrt1!#2~l r
21l i

22l0l r !~e2l0t121!

3sin~l it1!%/$l ie
lrt11e2l0t1@2~l0

1l r !sin~l it1!2l icos~l it1!#%

and

j̈0~t1!5„l0
2$l i@cos~l it1!2elrt1#1l rsin~l it1!%

1~e2l0t121!@l icos~l it1!2l rsin~l it1!#~l r
2

1l i
2!12l0$e

2l0t1@~l i
22l r

2!sin~l it!

12l il rcos~l it1!#22l il re
2(l01lr )t1%…/$l ie

lrt1

1e2l0t1@2~l01l r !sin~l it1!2l icos~l it1!#%.
d
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